

Forecasting the Future of EVs: Predicting the Grid

UtilityAnalytics Summit May 2022

UtilityAnalytics.

RELIABLE • AFFORDABLE • FOCUSED ON YOU

- Distribution electric Cooperative in Virginia serving 22 Counties
- Just over 170,000 connections
- More than 17,000 miles of line
- 400+ Employees

5th AVE NYC **1**900

Where is the car?-

5th AVE NYC 1913

Where is the horse?-

Data driven studies to answer key questions:

When, where, and what are the impacts to the grid from increased Electric Vehicle (EV) adoption and charging?

• How can we equip employees to plan for mitigation measures?

How much capacity do distribution transformers have remaining to support EV charging?

How can we make this data readily available to employees to make decisions?

EV Market Potential and Adoption

Understanding the vehicle electrification potential across a territory frames the market size

Forecasted bounds for the electrification potential within territory

Based on estimated duty cycles and expected EV charge power, energy and demand can be evaluated at a high level

Quantify the Market Develop a high-level assessment of the electrification potential for different vehicles classes

Adoption Forecast

Develop potential adoption of vehicles over time

Estimate Energy & Demand

Estimate mileage and vehicle duty cycles to estimate energy

Grid System Impacts se loading forecast to estimate impacts for Transmission and Distribution Systems

© 2022 1898 & Co., a division of Burns & McDonnell Engineering Co. All rights reserved.

Image: Image:<

Based on demographics, income, existing EV purchase trends and national EV purchase trends, adoption forecasts can be estimated

Output of the forecast to be used for system impact assessment

The adoption of new technology generally follows the diffusion of innovation theory

From the diffusion of innovation theory, we can develop curves that can model adoption over time

Note: Assumed a start value of 0%. Expected market size accounts for some categories being already adopted. Other categories are at very low adoption levels.

Zip code level EV forecast to identify "hot spots"

CURRENT MAP VIEW United States 1 HH Has Central

52.2 - 1188

1898

EV Market: Vehicle Specifications

	Vehicle Type	Efficiency (kWh/mi)	Range (mi)	Battery Size (kWH)	Charge Rate (kW)
	Class 1 Passenger Car & Small SUV	0.25-0.35	150-350	40-100	Level 2: 7-11 kW DCFC: 50-350 kW
Available 2022	Class 1 &2 Pickup Trucks and Large SUV	0.4-0.6	100-300	Туріса 100-200	al Peak Residential Demand ~ 5-7kW Level 2: 11-19.2 kW DCFC: 150-350 kW
	Class 2/3 Light Duty Vehicles	0.5-1	120-150	67-140	Level 2: 19.2 kW DCFC: 50-150 kW
2022				Typical De	epot: ~20-100kVa (Lighting/HVAC loads)
	Class 3-5 Buses/Utility Vehicles	1-1.5	105-205	110-230	Level 2: 13-19.2 kW DCFC: 50-150 kW
Available					
Development	Class 6-8 Bucket Trucks	2-4	~90 (With Aux Power)	250-350	Level 2: 19.2 kW DCFC: 150 kW
Pilot/Drayage in CA	Class 6-8 Trucks/Tractor Trailers	2+	125-250	230-500	Level 2: 19.2 kW DCFC: 50-250 -> 1MW+ in the future
1898	e 2022	1909 % Co., a division of Purpo % MoDo		l	

Power flow model development

- Historical Model Capture historical peak load and establish baseline scenarios for EVs to be added to
- Scenario Model Introduce EV charging load to the distribution system during historical peak load case to evaluate grid impacts
- Project Model Develop projects to efficiently support EV charging load while maintaining operation within compliance ranges

11

Slide 11

BAO Historical: Establish baseline scenarios for EVs to be added to Boyle, Carter A, 2022-05-05T00:32:14.087

LJ(0 0 done

Loyd, Joshua (Josh), 2022-05-05T02:15:29.952

LJ(1

Variable EV behavior yields variable grid strategy

Slide 12

BA0	Really like this slide				
	Boyle, Carter A, 2022-05-05T00:51:04.414				

- LJ(1 Planning criteria that doesn't allow it to get to 100% Loyd, Joshua (Josh), 2022-05-05T14:33:05.563
- LJ(1 0 Planning limit 50-80% before triggering upgrades Loyd, Joshua (Josh), 2022-05-05T14:33:28.771

^{BAO} By shifting the EV charging peak, an opportunity exists to maximize grid assets

BA0 This slide takes a little digesting. Making the labels for what is on the graph different from the explanations of the graph will probably make the purpose a little more... Salient :) Boyle, Carter A, 2022-05-05T00:56:14.063

How to prepare for potential EV Adoption?

Data collection, analysis, and collaboration are necessary to proactively evaluate, plan, and prepare for materializing impacts from EV charging.

Next Steps

DC Fast Charging Analysis

Date Range (Eastern) 4/6/2018 4/30/2022

Wawa DC Fast Charger Loading

Wawa DC Fast Charger Load Factor Data

YYYY-MM	Consumption (kWh)	Max Demand (kW)	Load Factor
2022-04	70,043.59	507.38	19.17%
2022-03	67,453.26	507.18	17.88%
2022-02	58,402.22	523.30	16.61%
2022-01	58,693.48	472.51	16.70%
2021-12	65,601.48	514.64	17.13%
2021-11	68,748.79	484.75	19.70%
2021-10	58,014.21	502.37	15.52%
2021-09	49,810.09	483.07	14.32%
2021-08	52,661.33	499.25	14.18%
2021-07	57,103.10	497.02	15.44%
2021-06	53,885.48	459.65	16.28%
2021-05	57,382.60	488.51	15.79%
2021-04	51,834.15	474.59	15.17%
2021-03	53,280.08	507.31	14.12%
2021-02	38,501.54	456.38	12.55%
2021-01	49,280.76	468.27	14.15%
2020-12	49,064.16	468.83	14.07%
2020-11	42,146.50	459.49	12.74%
2020-10	44,557.31	463.94	12.91%
2020-09	38,013.61	509.82	10.36%
2020-08	41,512.00	380.96	14.65%
2020-07	42,347.51	382.88	14.87%
2020-06	36,973.83	459.46	11.18%
Total	41,674.92	427.05	13.01%

 \Diamond

Data is available for all previous months. On the first day of each month, data for the previous month will be available upon data refresh

Distribution Load Transformer Analysis

© 2022 1898 & Co., a division of Burns & McDonnell Engineering Co. All rights reserved.

17

Distribution Transformer Loading Heat Chart

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

Questions? Thank You

